3.368 \(\int \frac{a B+b B \tan (c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=123 \[ -\frac{2 b B}{d \left (a^2+b^2\right ) \sqrt{a+b \tan (c+d x)}}-\frac{i B \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d (a-i b)^{3/2}}+\frac{i B \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d (a+i b)^{3/2}} \]

[Out]

((-I)*B*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/((a - I*b)^(3/2)*d) + (I*B*ArcTanh[Sqrt[a + b*Tan[c +
 d*x]]/Sqrt[a + I*b]])/((a + I*b)^(3/2)*d) - (2*b*B)/((a^2 + b^2)*d*Sqrt[a + b*Tan[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.185477, antiderivative size = 123, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.214, Rules used = {21, 3483, 3539, 3537, 63, 208} \[ -\frac{2 b B}{d \left (a^2+b^2\right ) \sqrt{a+b \tan (c+d x)}}-\frac{i B \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d (a-i b)^{3/2}}+\frac{i B \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d (a+i b)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a*B + b*B*Tan[c + d*x])/(a + b*Tan[c + d*x])^(5/2),x]

[Out]

((-I)*B*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/((a - I*b)^(3/2)*d) + (I*B*ArcTanh[Sqrt[a + b*Tan[c +
 d*x]]/Sqrt[a + I*b]])/((a + I*b)^(3/2)*d) - (2*b*B)/((a^2 + b^2)*d*Sqrt[a + b*Tan[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 3483

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(a + b*Tan[c + d*x])^(n + 1))/(d*(n + 1)
*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a - b*Tan[c + d*x])*(a + b*Tan[c + d*x])^(n + 1), x], x] /; FreeQ
[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && LtQ[n, -1]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{a B+b B \tan (c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx &=B \int \frac{1}{(a+b \tan (c+d x))^{3/2}} \, dx\\ &=-\frac{2 b B}{\left (a^2+b^2\right ) d \sqrt{a+b \tan (c+d x)}}+\frac{B \int \frac{a-b \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx}{a^2+b^2}\\ &=-\frac{2 b B}{\left (a^2+b^2\right ) d \sqrt{a+b \tan (c+d x)}}+\frac{B \int \frac{1+i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx}{2 (a-i b)}+\frac{B \int \frac{1-i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx}{2 (a+i b)}\\ &=-\frac{2 b B}{\left (a^2+b^2\right ) d \sqrt{a+b \tan (c+d x)}}+\frac{B \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 (i a-b) d}-\frac{B \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 (i a+b) d}\\ &=-\frac{2 b B}{\left (a^2+b^2\right ) d \sqrt{a+b \tan (c+d x)}}-\frac{B \operatorname{Subst}\left (\int \frac{1}{-1-\frac{i a}{b}+\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{(a-i b) b d}-\frac{B \operatorname{Subst}\left (\int \frac{1}{-1+\frac{i a}{b}-\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{(a+i b) b d}\\ &=-\frac{i B \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{(a-i b)^{3/2} d}+\frac{i B \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{(a+i b)^{3/2} d}-\frac{2 b B}{\left (a^2+b^2\right ) d \sqrt{a+b \tan (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 0.138146, size = 106, normalized size = 0.86 \[ \frac{B \left (i (a+i b) \text{Hypergeometric2F1}\left (-\frac{1}{2},1,\frac{1}{2},\frac{a+b \tan (c+d x)}{a-i b}\right )+(-b-i a) \text{Hypergeometric2F1}\left (-\frac{1}{2},1,\frac{1}{2},\frac{a+b \tan (c+d x)}{a+i b}\right )\right )}{d \left (a^2+b^2\right ) \sqrt{a+b \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*B + b*B*Tan[c + d*x])/(a + b*Tan[c + d*x])^(5/2),x]

[Out]

(B*(I*(a + I*b)*Hypergeometric2F1[-1/2, 1, 1/2, (a + b*Tan[c + d*x])/(a - I*b)] + ((-I)*a - b)*Hypergeometric2
F1[-1/2, 1, 1/2, (a + b*Tan[c + d*x])/(a + I*b)]))/((a^2 + b^2)*d*Sqrt[a + b*Tan[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.094, size = 1955, normalized size = 15.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x)

[Out]

-2*b*B/(a^2+b^2)/d/(a+b*tan(d*x+c))^(1/2)+1/4/d*B/b/(a^2+b^2)^2*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a
^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3+1/4/d*B*b/(a^2+b^2)^2*ln(b*tan(d*x
+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a-1/
4/d*B/b/(a^2+b^2)^(5/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2)
)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^4+1/4/d*B*b^3/(a^2+b^2)^(5/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a
^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-1/d*B/b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(
1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))
*a^3-1/d*B*b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)
+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a-1/d*B*b/(a^2+b^2)^2/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b
*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2+1/d*B/b/(a^2+b^2)^(5/2)/(
2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2
)-2*a)^(1/2))*a^5-1/d*B*b^3/(a^2+b^2)^2/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2
+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))+3/d*B*b^3/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)
*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a+4/d*B*b/(a^2
+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(
a^2+b^2)^(1/2)-2*a)^(1/2))*a^3-1/4/d*B/b/(a^2+b^2)^2*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b
*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3-1/4/d*B*b/(a^2+b^2)^2*ln((a+b*tan(d*x+c))^(1/
2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a+1/4/d*B/b/(a^
2+b^2)^(5/2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b
^2)^(1/2)+2*a)^(1/2)*a^4-1/4/d*B*b^3/(a^2+b^2)^(5/2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b
*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+1/d*B/b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(
1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^3+1/d*B*
b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2)
)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a+1/d*B*b/(a^2+b^2)^2/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2
)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2-1/d*B/b/(a^2+b^2)^(5/2)/(2*(a^2+b^2)
^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2
))*a^5+1/d*B*b^3/(a^2+b^2)^2/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*
x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))-3/d*B*b^3/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2
*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a-4/d*B*b/(a^2+b^2)^(5/2)
/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1
/2)-2*a)^(1/2))*a^3

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.64157, size = 14052, normalized size = 114.24 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/4*(4*sqrt(2)*((a^10 + 3*a^8*b^2 + 2*a^6*b^4 - 2*a^4*b^6 - 3*a^2*b^8 - b^10)*d^5*cos(d*x + c)^2 + 2*(a^9*b +
4*a^7*b^3 + 6*a^5*b^5 + 4*a^3*b^7 + a*b^9)*d^5*cos(d*x + c)*sin(d*x + c) + (a^8*b^2 + 4*a^6*b^4 + 6*a^4*b^6 +
4*a^2*b^8 + b^10)*d^5)*sqrt((B^2*a^6 + 3*B^2*a^4*b^2 + 3*B^2*a^2*b^4 + B^2*b^6 + (a^9 - 6*a^5*b^4 - 8*a^3*b^6
- 3*a*b^8)*d^2*sqrt(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*B^2*a^4*b^2 - 6*B^2*a^2*b^4 + B^2*b^6))
*(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(3/4)*sqrt((9*B^4*a^4*b^2 - 6*B^4*a^2*b^4 + B^4*b^6)/((a^12 +
 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4))*arctan(((3*B^6*a^12 + 14*B^6*a^1
0*b^2 + 25*B^6*a^8*b^4 + 20*B^6*a^6*b^6 + 5*B^6*a^4*b^8 - 2*B^6*a^2*b^10 - B^6*b^12)*d^4*sqrt(B^4/((a^6 + 3*a^
4*b^2 + 3*a^2*b^4 + b^6)*d^4))*sqrt((9*B^4*a^4*b^2 - 6*B^4*a^2*b^4 + B^4*b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4
 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) + (3*B^8*a^9 + 8*B^8*a^7*b^2 + 6*B^8*a^5*b^4 - B^8*a*b^8
)*d^2*sqrt((9*B^4*a^4*b^2 - 6*B^4*a^2*b^4 + B^4*b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^
8 + 6*a^2*b^10 + b^12)*d^4)) + sqrt(2)*(2*(a^13 + 6*a^11*b^2 + 15*a^9*b^4 + 20*a^7*b^6 + 15*a^5*b^8 + 6*a^3*b^
10 + a*b^12)*d^7*sqrt(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))*sqrt((9*B^4*a^4*b^2 - 6*B^4*a^2*b^4 + B^4
*b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) + (B^2*a^10 + 5*B^
2*a^8*b^2 + 10*B^2*a^6*b^4 + 10*B^2*a^4*b^6 + 5*B^2*a^2*b^8 + B^2*b^10)*d^5*sqrt((9*B^4*a^4*b^2 - 6*B^4*a^2*b^
4 + B^4*b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)))*sqrt((B^2*
a^6 + 3*B^2*a^4*b^2 + 3*B^2*a^2*b^4 + B^2*b^6 + (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)*d^2*sqrt(B^4/((a^6 + 3
*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*B^2*a^4*b^2 - 6*B^2*a^2*b^4 + B^2*b^6))*sqrt(((9*B^4*a^8*b^2 + 12*B^4*a^
6*b^4 - 2*B^4*a^4*b^6 - 4*B^4*a^2*b^8 + B^4*b^10)*d^2*sqrt(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))*cos(
d*x + c) + sqrt(2)*((9*B^3*a^8*b^3 + 12*B^3*a^6*b^5 - 2*B^3*a^4*b^7 - 4*B^3*a^2*b^9 + B^3*b^11)*d^3*sqrt(B^4/(
(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))*cos(d*x + c) + 2*(9*B^5*a^5*b^3 - 6*B^5*a^3*b^5 + B^5*a*b^7)*d*cos(d
*x + c))*sqrt((B^2*a^6 + 3*B^2*a^4*b^2 + 3*B^2*a^2*b^4 + B^2*b^6 + (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)*d^2
*sqrt(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*B^2*a^4*b^2 - 6*B^2*a^2*b^4 + B^2*b^6))*sqrt((a*cos(d
*x + c) + b*sin(d*x + c))/cos(d*x + c))*(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(1/4) + (9*B^6*a^5*b^2
 - 6*B^6*a^3*b^4 + B^6*a*b^6)*cos(d*x + c) + (9*B^6*a^4*b^3 - 6*B^6*a^2*b^5 + B^6*b^7)*sin(d*x + c))/cos(d*x +
 c))*(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(3/4) + sqrt(2)*(2*(3*B^3*a^15*b + 17*B^3*a^13*b^3 + 39*B
^3*a^11*b^5 + 45*B^3*a^9*b^7 + 25*B^3*a^7*b^9 + 3*B^3*a^5*b^11 - 3*B^3*a^3*b^13 - B^3*a*b^15)*d^7*sqrt(B^4/((a
^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))*sqrt((9*B^4*a^4*b^2 - 6*B^4*a^2*b^4 + B^4*b^6)/((a^12 + 6*a^10*b^2 + 1
5*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) + (3*B^5*a^12*b + 14*B^5*a^10*b^3 + 25*B^5*a^8*
b^5 + 20*B^5*a^6*b^7 + 5*B^5*a^4*b^9 - 2*B^5*a^2*b^11 - B^5*b^13)*d^5*sqrt((9*B^4*a^4*b^2 - 6*B^4*a^2*b^4 + B^
4*b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)))*sqrt((B^2*a^6 +
3*B^2*a^4*b^2 + 3*B^2*a^2*b^4 + B^2*b^6 + (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)*d^2*sqrt(B^4/((a^6 + 3*a^4*b
^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*B^2*a^4*b^2 - 6*B^2*a^2*b^4 + B^2*b^6))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))
/cos(d*x + c))*(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(3/4))/(9*B^10*a^4*b^2 - 6*B^10*a^2*b^4 + B^10*
b^6)) + 4*sqrt(2)*((a^10 + 3*a^8*b^2 + 2*a^6*b^4 - 2*a^4*b^6 - 3*a^2*b^8 - b^10)*d^5*cos(d*x + c)^2 + 2*(a^9*b
 + 4*a^7*b^3 + 6*a^5*b^5 + 4*a^3*b^7 + a*b^9)*d^5*cos(d*x + c)*sin(d*x + c) + (a^8*b^2 + 4*a^6*b^4 + 6*a^4*b^6
 + 4*a^2*b^8 + b^10)*d^5)*sqrt((B^2*a^6 + 3*B^2*a^4*b^2 + 3*B^2*a^2*b^4 + B^2*b^6 + (a^9 - 6*a^5*b^4 - 8*a^3*b
^6 - 3*a*b^8)*d^2*sqrt(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*B^2*a^4*b^2 - 6*B^2*a^2*b^4 + B^2*b^
6))*(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(3/4)*sqrt((9*B^4*a^4*b^2 - 6*B^4*a^2*b^4 + B^4*b^6)/((a^1
2 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4))*arctan(-((3*B^6*a^12 + 14*B^6
*a^10*b^2 + 25*B^6*a^8*b^4 + 20*B^6*a^6*b^6 + 5*B^6*a^4*b^8 - 2*B^6*a^2*b^10 - B^6*b^12)*d^4*sqrt(B^4/((a^6 +
3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))*sqrt((9*B^4*a^4*b^2 - 6*B^4*a^2*b^4 + B^4*b^6)/((a^12 + 6*a^10*b^2 + 15*a^8
*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) + (3*B^8*a^9 + 8*B^8*a^7*b^2 + 6*B^8*a^5*b^4 - B^8*a
*b^8)*d^2*sqrt((9*B^4*a^4*b^2 - 6*B^4*a^2*b^4 + B^4*b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^
4*b^8 + 6*a^2*b^10 + b^12)*d^4)) - sqrt(2)*(2*(a^13 + 6*a^11*b^2 + 15*a^9*b^4 + 20*a^7*b^6 + 15*a^5*b^8 + 6*a^
3*b^10 + a*b^12)*d^7*sqrt(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))*sqrt((9*B^4*a^4*b^2 - 6*B^4*a^2*b^4 +
 B^4*b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) + (B^2*a^10 +
5*B^2*a^8*b^2 + 10*B^2*a^6*b^4 + 10*B^2*a^4*b^6 + 5*B^2*a^2*b^8 + B^2*b^10)*d^5*sqrt((9*B^4*a^4*b^2 - 6*B^4*a^
2*b^4 + B^4*b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)))*sqrt((
B^2*a^6 + 3*B^2*a^4*b^2 + 3*B^2*a^2*b^4 + B^2*b^6 + (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)*d^2*sqrt(B^4/((a^6
 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*B^2*a^4*b^2 - 6*B^2*a^2*b^4 + B^2*b^6))*sqrt(((9*B^4*a^8*b^2 + 12*B^
4*a^6*b^4 - 2*B^4*a^4*b^6 - 4*B^4*a^2*b^8 + B^4*b^10)*d^2*sqrt(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))*
cos(d*x + c) - sqrt(2)*((9*B^3*a^8*b^3 + 12*B^3*a^6*b^5 - 2*B^3*a^4*b^7 - 4*B^3*a^2*b^9 + B^3*b^11)*d^3*sqrt(B
^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))*cos(d*x + c) + 2*(9*B^5*a^5*b^3 - 6*B^5*a^3*b^5 + B^5*a*b^7)*d*c
os(d*x + c))*sqrt((B^2*a^6 + 3*B^2*a^4*b^2 + 3*B^2*a^2*b^4 + B^2*b^6 + (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)
*d^2*sqrt(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*B^2*a^4*b^2 - 6*B^2*a^2*b^4 + B^2*b^6))*sqrt((a*c
os(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(1/4) + (9*B^6*a^5
*b^2 - 6*B^6*a^3*b^4 + B^6*a*b^6)*cos(d*x + c) + (9*B^6*a^4*b^3 - 6*B^6*a^2*b^5 + B^6*b^7)*sin(d*x + c))/cos(d
*x + c))*(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(3/4) - sqrt(2)*(2*(3*B^3*a^15*b + 17*B^3*a^13*b^3 +
39*B^3*a^11*b^5 + 45*B^3*a^9*b^7 + 25*B^3*a^7*b^9 + 3*B^3*a^5*b^11 - 3*B^3*a^3*b^13 - B^3*a*b^15)*d^7*sqrt(B^4
/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))*sqrt((9*B^4*a^4*b^2 - 6*B^4*a^2*b^4 + B^4*b^6)/((a^12 + 6*a^10*b^2
 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) + (3*B^5*a^12*b + 14*B^5*a^10*b^3 + 25*B^5*
a^8*b^5 + 20*B^5*a^6*b^7 + 5*B^5*a^4*b^9 - 2*B^5*a^2*b^11 - B^5*b^13)*d^5*sqrt((9*B^4*a^4*b^2 - 6*B^4*a^2*b^4
+ B^4*b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)))*sqrt((B^2*a^
6 + 3*B^2*a^4*b^2 + 3*B^2*a^2*b^4 + B^2*b^6 + (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)*d^2*sqrt(B^4/((a^6 + 3*a
^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*B^2*a^4*b^2 - 6*B^2*a^2*b^4 + B^2*b^6))*sqrt((a*cos(d*x + c) + b*sin(d*x +
 c))/cos(d*x + c))*(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(3/4))/(9*B^10*a^4*b^2 - 6*B^10*a^2*b^4 + B
^10*b^6)) + sqrt(2)*((B^4*a^4 - B^4*b^4)*d*cos(d*x + c)^2 + 2*(B^4*a^3*b + B^4*a*b^3)*d*cos(d*x + c)*sin(d*x +
 c) + (B^4*a^2*b^2 + B^4*b^4)*d - ((B^2*a^7 - 3*B^2*a^5*b^2 - B^2*a^3*b^4 + 3*B^2*a*b^6)*d^3*cos(d*x + c)^2 +
2*(B^2*a^6*b - 2*B^2*a^4*b^3 - 3*B^2*a^2*b^5)*d^3*cos(d*x + c)*sin(d*x + c) + (B^2*a^5*b^2 - 2*B^2*a^3*b^4 - 3
*B^2*a*b^6)*d^3)*sqrt(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))*sqrt((B^2*a^6 + 3*B^2*a^4*b^2 + 3*B^2*a^
2*b^4 + B^2*b^6 + (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)*d^2*sqrt(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^
4)))/(9*B^2*a^4*b^2 - 6*B^2*a^2*b^4 + B^2*b^6))*(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(1/4)*log(((9*
B^4*a^8*b^2 + 12*B^4*a^6*b^4 - 2*B^4*a^4*b^6 - 4*B^4*a^2*b^8 + B^4*b^10)*d^2*sqrt(B^4/((a^6 + 3*a^4*b^2 + 3*a^
2*b^4 + b^6)*d^4))*cos(d*x + c) + sqrt(2)*((9*B^3*a^8*b^3 + 12*B^3*a^6*b^5 - 2*B^3*a^4*b^7 - 4*B^3*a^2*b^9 + B
^3*b^11)*d^3*sqrt(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))*cos(d*x + c) + 2*(9*B^5*a^5*b^3 - 6*B^5*a^3*b
^5 + B^5*a*b^7)*d*cos(d*x + c))*sqrt((B^2*a^6 + 3*B^2*a^4*b^2 + 3*B^2*a^2*b^4 + B^2*b^6 + (a^9 - 6*a^5*b^4 - 8
*a^3*b^6 - 3*a*b^8)*d^2*sqrt(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*B^2*a^4*b^2 - 6*B^2*a^2*b^4 +
B^2*b^6))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))
^(1/4) + (9*B^6*a^5*b^2 - 6*B^6*a^3*b^4 + B^6*a*b^6)*cos(d*x + c) + (9*B^6*a^4*b^3 - 6*B^6*a^2*b^5 + B^6*b^7)*
sin(d*x + c))/cos(d*x + c)) - sqrt(2)*((B^4*a^4 - B^4*b^4)*d*cos(d*x + c)^2 + 2*(B^4*a^3*b + B^4*a*b^3)*d*cos(
d*x + c)*sin(d*x + c) + (B^4*a^2*b^2 + B^4*b^4)*d - ((B^2*a^7 - 3*B^2*a^5*b^2 - B^2*a^3*b^4 + 3*B^2*a*b^6)*d^3
*cos(d*x + c)^2 + 2*(B^2*a^6*b - 2*B^2*a^4*b^3 - 3*B^2*a^2*b^5)*d^3*cos(d*x + c)*sin(d*x + c) + (B^2*a^5*b^2 -
 2*B^2*a^3*b^4 - 3*B^2*a*b^6)*d^3)*sqrt(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))*sqrt((B^2*a^6 + 3*B^2*
a^4*b^2 + 3*B^2*a^2*b^4 + B^2*b^6 + (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)*d^2*sqrt(B^4/((a^6 + 3*a^4*b^2 + 3
*a^2*b^4 + b^6)*d^4)))/(9*B^2*a^4*b^2 - 6*B^2*a^2*b^4 + B^2*b^6))*(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^
4))^(1/4)*log(((9*B^4*a^8*b^2 + 12*B^4*a^6*b^4 - 2*B^4*a^4*b^6 - 4*B^4*a^2*b^8 + B^4*b^10)*d^2*sqrt(B^4/((a^6
+ 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))*cos(d*x + c) - sqrt(2)*((9*B^3*a^8*b^3 + 12*B^3*a^6*b^5 - 2*B^3*a^4*b^7 -
 4*B^3*a^2*b^9 + B^3*b^11)*d^3*sqrt(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))*cos(d*x + c) + 2*(9*B^5*a^5
*b^3 - 6*B^5*a^3*b^5 + B^5*a*b^7)*d*cos(d*x + c))*sqrt((B^2*a^6 + 3*B^2*a^4*b^2 + 3*B^2*a^2*b^4 + B^2*b^6 + (a
^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)*d^2*sqrt(B^4/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*B^2*a^4*b^2
- 6*B^2*a^2*b^4 + B^2*b^6))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*(B^4/((a^6 + 3*a^4*b^2 + 3*a^
2*b^4 + b^6)*d^4))^(1/4) + (9*B^6*a^5*b^2 - 6*B^6*a^3*b^4 + B^6*a*b^6)*cos(d*x + c) + (9*B^6*a^4*b^3 - 6*B^6*a
^2*b^5 + B^6*b^7)*sin(d*x + c))/cos(d*x + c)) - 8*(B^5*a*b*cos(d*x + c)^2 + B^5*b^2*cos(d*x + c)*sin(d*x + c))
*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c)))/((B^4*a^4 - B^4*b^4)*d*cos(d*x + c)^2 + 2*(B^4*a^3*b +
B^4*a*b^3)*d*cos(d*x + c)*sin(d*x + c) + (B^4*a^2*b^2 + B^4*b^4)*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} B \int \frac{1}{a \sqrt{a + b \tan{\left (c + d x \right )}} + b \sqrt{a + b \tan{\left (c + d x \right )}} \tan{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))**(5/2),x)

[Out]

B*Integral(1/(a*sqrt(a + b*tan(c + d*x)) + b*sqrt(a + b*tan(c + d*x))*tan(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B b \tan \left (d x + c\right ) + B a}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((B*b*tan(d*x + c) + B*a)/(b*tan(d*x + c) + a)^(5/2), x)